Go Back   AFA Forums > Science, Logic and Reason > Physical Sciences

Physical Sciences Physics, Chemistry, Geology, Astronomy, Mathematics etc

Reply
 
Thread Tools
  #1  
Old 27th February 2012, 12:15 PM
Darwinsbulldog's Avatar
Darwinsbulldog Darwinsbulldog is offline
Science Moderator
 
Join Date: Jan 2009
Location: Perth
Posts: 11,555
Default Scientists Score New Victory Over Quantum Uncertainty

Quote:
ScienceDaily (Feb. 26, 2012) — Most people attempt to reduce the little uncertainties of life by carrying umbrellas on cloudy days, purchasing automobile insurance or hiring inspectors to evaluate homes they might consider purchasing. For scientists, reducing uncertainty is a no less important goal, though in the weird realm of quantum physics, the term has a more specific meaning.
For scientists working in quantum physics, the Heisenberg Uncertainty Principle says that measurements of properties such as the momentum of an object and its exact position cannot be simultaneously specified with arbitrary accuracy. As a result, there must be some uncertainty in either the exact position of the object, or its exact momentum. The amount of uncertainty can be determined, and is often represented graphically by a circle showing the area within which the measurement actually lies.
Over the past few decades, scientists have learned to cheat a bit on the Uncertainty Principle through a process called "squeezing," which has the effect of changing how the uncertainty is shown graphically. Changing the circle to an ellipse and ultimately to almost a line allows one component of the complementary measurements -- the momentum or the position, in the case of an object -- to be specified more precisely than would otherwise be possible. The actual area of uncertainty remains unchanged, but is represented by a different shape that serves to improve accuracy in measuring one property.
This squeezing has been done in measuring properties of photons and atoms, and can be important to certain high-precision measurements needed by atomic clocks and the magnetometers used to create magnetic resonance imaging views of structures deep inside the body. For the military, squeezing more accuracy could improve the detection of enemy submarines attempting to hide underwater or improve the accuracy of atom-based inertial guidance instruments.
Now physicists at the Georgia Institute of Technology have added another measurement to the list of those that can be squeezed. In a paper appearing online February 26 in the journal Nature Physics, they report squeezing a property called the nematic tensor, which is used to describe the rubidium atoms in Bose-Einstein condensates, a unique form of matter in which all atoms have the same quantum state. The research was sponsored by the National Science Foundation (NSF).
"What is new about our work is that we have probably achieved the highest level of atom squeezing reported so far, and the more squeezing you get, the better," said Michael Chapman, a professor in Georgia Tech's School of Physics. "We are also squeezing something other than what people have squeezed before."
Scientists have been squeezing the spin states of atoms for 15 years, but only for atoms that have just two relevant quantum states -- known as spin ½ systems. In collections of those atoms, the spin states of the individual atoms can be added together to get a collective angular momentum that describes the entire system of atoms.
In the Bose-Einstein condensate atoms being studied by Chapman's group, the atoms have three quantum states, and their collective spin totals zero -- not very helpful for describing systems. So Chapman and graduate students Chris Hamley, Corey Gerving, Thai Hoang and Eva Bookjans learned to squeeze a more complex measure that describes their system of spin 1 atoms: nematic tensor, also known as quadrupole.
Nematicity is a measure of alignment that is important in describing liquid crystals, exotic magnetic materials and some high temperature superconductors.
"We don't have a spin vector pointing in a particular direction, but there is still some residual information in where this collection of atoms is pointing," Chapman explained. "That next higher-order description is the quadrupole, or nematic tensor. Squeezing this actually works quite well, and we get a large degree of improvement, so we think it is relatively promising."
Experimentally, the squeezing is created by entangling some of the atoms, which takes away their independence. Chapman's group accomplishes this by colliding atoms in their ensemble of some 40,000 rubidium atoms.
"After they collide, the state of one atom is connected to that of the other atom, so they have been entangled in that way," he said. "This entanglement creates the squeezing."
Reducing uncertainty in measuring atoms could have important implications for precise magnetic measurements. The next step will be to determine experimentally if the technique can improve the measurement of magnetic field, which could have important applications.
"In principle, this should be a straightforward experiment, but it turns out that the biggest challenge is that magnetic fields in the laboratory fluctuate due to environmental factors such as the effects of devices such as computer monitors," Chapman said. "If we had a noiseless laboratory, we could measure the magnetic field both with and without squeezed states to demonstrate the enhanced precision. But in our current lab environment, our measurements would be affected by outside noise, not the limitations of the atomic sensors we are using."
The new squeezed property could also have application to quantum information systems, which can store information in the spin of atoms and their nematic tensor.
"There are a lot of things you can do with quantum entanglement, and improving the accuracy of measurements is one of them," Chapman added. "We still have to obey Heisenberg's Uncertainty Principle, but we do have the ability to manipulate it."
http://www.sciencedaily.com/releases...0226153510.htm

ABS ONLY:-

Hamley, C. D., C. S. Gerving, et al. (2012). "Spin-nematic squeezed vacuum in a quantum gas." Nat Phys advance online publication.

Quote:
The standard quantum limit of measurement uncertainty can be surpassed using squeezed states, which minimize the uncertainty product in Heisenberg’s relation by reducing the uncertainty of one property at the expense of another1. Collisions in ultracold atomic gases have been used to induce quadrature spin squeezing in two-component Bose condensates 2, 3, for which the complementary properties are the components of the total spin vector. Here, we generalize this finding to a higher-dimensional spin space by measuring squeezing in a spin-1 Bose condensate. Following a quench through a quantum phase transition, we demonstrate that spin-nematic quadrature squeezing improves on the standard quantum limit by up to 8–10 dB—a significant increase on previous measurements. This squeezing is associated with negligible occupation of the squeezed modes, and is analogous to optical two-mode vacuum squeezing. The observation has implications for continuous variable quantum information and quantum-enhanced magnetometry.
http://www.nature.com/nphys/journal/...nphys2245.html
__________________
The religious are not necessarily insane, but oft look to it as a state of considerable virtue.
Reply With Quote
Reply

Bookmarks

Thread Tools

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump


All times are GMT +10. The time now is 09:51 PM.


Powered by vBulletin® Version 3.8.8
Copyright ©2000 - 2014, vBulletin Solutions, Inc.